Robust Dead Reckoning: Calibration, Covariance Estimation, Fusion and Integrity Monitoring
نویسندگان
چکیده
To measure system states and local environment directly with high precision, expensive sensors are required. However, highly accurate system states and environmental perception can also be achieved using data fusion techniques and digital maps. One crucial task of multi-sensor state estimation is to project different sensor measurements into the same temporal, spatial and physical domain, estimate their covariance matrices as well as the exclusion of erroneous measurements. This paper presents a generic approach for robust estimation of vehicle movement (odometry). We will shortly present our calibration procedure, including the estimation of sensor alignments, offset / scaling errors, covariances / correlations and time delays. An improved algorithm for wheel diameter estimation is presented. Additionally an approach for robust odometry will be shown as odometry estimations are fused under known covariances, while outliers are detected using a chi-squared test. Utilizing our robust odometry, local environmental views can be associated and fused. Furthermore our robust odometry can be used to detect and exclude erroneous position estimates.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملDevelopment of a Pedestrian Indoor Navigation System Based on Multi-sensor Fusion and Fuzzy Logic Estimation Algorithms
This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors...
متن کاملA New Approach to Self-localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملImproved Pose Estimation for Mobile Robots by Fusion of Odometry Data and Environment Map
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods, usually require explicit measurement of actual motion of the robot. Some recent methods, use the smart encoder trailer or long range finder sensors suc...
متن کاملInertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion
The challenges of self-contained sensor based pedestrian dead reckoning (PDR) are mainly sensor installation errors and path integral errors caused by sensor variance, and both may dramatically decrease the accuracy of PDR. To address these challenges, this paper presents a multi-sensor fusion based method in which subjects perform specified walking trials at self-administered speeds in both in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.02058 شماره
صفحات -
تاریخ انتشار 2018